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Abstract

In Computational Anatomy variability among medical
images is encoded by a large deformation diffeomorphic
mapping matching each instance with a template. The set
of diffeomorphisms is usually endowed with a Riemannian
manifold structure and parameterized by non-stationary ve-
locity vector fields. An alternative parameterization based
on stationary vector fields has been recently proposed,
where paths of diffeomorphisms are the one-parameter sub-
groups, identified with the group exponential map. A Log-
Euclidean framework was proposed to compute statistics
on finite dimensional Lie groups and later extended to dif-
feomorphisms. A fast algorithm based on the Scaling and
Squaring (SS) method for the matrix exponential was ap-
plied to compute the exponential of diffeomorphisms.

In this work we evaluate the performance of different ap-
proaches to compute the exponential in terms of accuracy
and computational time. These approaches include forward
Euler method, Taylor expansion, iterative composition, SS
method, and a combination of interpolation and SS. In our
results the SS method obtained the best performance trade-
off, as it is accurate, fast and robust, but it has an intrinsic
lower bound in accuracy. This lower bound can be par-
tially overcome by oversampling the grid, at the expense
of increased memory and time requirements. The Taylor ex-
pansion provided a fast alternative when spatial frequencies
are small, and particularly for low ambient dimensions, but
its convergence is not guaranteed in general.

1. Introduction

Computational Anatomy is a paradigm in which images
are mapped to a template by means of large deformation dif-
feomorphic mappings [5]. A Cr− diffeomorphism is an in-
vertible map ϕ : Ω → Ω that is r times differentiable, where
Ω is the image domain. The differentiability of ϕ(x) is de-
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sired because mappings must roughly preserve the smooth-
ness of anatomical structures. The set of diffeomorphisms
forms an infinite dimensional group with composition. A
diffeomorphism ϕ(x) can be obtained as the end point of a
flow φv

t (x) defined by

d

dt
φv

t (x) = v(t, φv
t (x)) (1)

with initial condition φv
0(x) = x, and v : [0, 1] → V a

time-dependent velocity vector field, i.e. ϕ(x) ≡ φ1(x). An
inner product 〈v1, v2〉V ≡ 〈Lv1, Lv2〉L2 can be defined in
the space of velocity vector fields v that endows Cr with
a Riemannian manifold structure. L is an invertible lin-
ear differential operator that guarantees the smoothness of v
and therefore the smoothness and invertibility of ϕ(t). Dis-
tance between two diffeomorphisms can be measured with
the length of the geodesic connecting them [8, 2].

In a recent work [1] the subset of diffeomorphisms ob-
tained by constraining v to be a stationary vector field

d

dt
φv

t (x) = v(φv
t (x)) (2)

was used to parameterize transformations between medical
images. This parameterization showed a similar registra-
tion performance (accuracy and smoothness) than diffeo-
morphisms parameterized by non-stationary vector fields,
with a significant computational complexity saving [7]. The
paths of diffeomorphisms defined by (2) are identified with
the one-parameter subgroups, and therefore with the group
exponential map: exp(v) ≡ φv

1(x) = ϕv(x). Note that be-
ing a one-parameters subgroup implies φv

2t(x) = φv
t (x) ◦

φv
t (x) = φv

t (φv
t (x)), and therefore exp(t v) = φv

t (x) =
ϕtv(x).

Within this framework, the Log-Euclidean distance was
defined as d(ϕ1(x), ϕ2(x)) = ‖ log(ϕ1) − log(ϕ2)‖V ≡
‖L log(ϕ1) − L log(ϕ2)‖L2 , being the group logarithm
log(ϕ) = v(x) the inverse map of exp(v) ( from now on, we
will drop the superscript v form φv

t (x) and ϕv(x) ). Vector
fields v(x) can be thought as vectors on a Hilbert space and
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standard Euclidean computation can be done with vectors
Lv(x) [4].

Even though the metric linked to this distance is neither
left- nor right-invariant, it provides a powerful framework
where statistics can be more easily computed than in the
Riemannian distance framework. In [1], the standard Scal-
ing and Squaring (SS) and Inverse Scaling and Squaring
(ISS) methods for computing the matrix exponential and
logarithm respectively, was applied to compute the group
exponential and logarithm of diffeomorphisms. In [4] the
Baker-Campbell-Hausdorff (BCH) formula was applied in
the diffeomorphism group. The BCH formula provides an
expression for the logarithm of a composition of two ex-
ponentials v3(x) = log(exp(v1) ◦ exp(v2)) as a series ex-
panded in terms of the Lie bracket [v1(x), v2(x)].

In this work, we analyzed various numerical schemes to
compute the group exponential map, i.e. explicit forward
Euler integration, Taylor expansion series, composition of
small diffeomorphisms, SS and SS with v(x) interpolated
at a finer grid. We compared performance of the methods in
terms of accuracy and computational time for various exper-
imental setting (i.e. ambient dimension 1, 2 and 3, amount
of displacement and spatial frequency).

2. Numerical implementation of the group ex-
ponential of diffeomorphisms

We discuss several methods to solve equation (2). In
practice v(x) is obtained either as the outcome of an image
registration procedure, or indirectly from an estimation of
the logarithm. In both cases the data is sampled at a regular
grid.

Vector fields v(x) belong to a linear vector space, there-
fore any kernel interpolation scheme can be used, provid-
ing different degrees of smoothness. However, much more
care must be taken when interpolating diffeomorphisms,
which is essential in the composition operation. Diffeomor-
phisms must be invertible everywhere, and most interpola-
tion schemes do not guarantee invertibility. Computing the
interpolation that guarantees invertibility [6] is a task even
more complex than solving (2). Given two sets of N non-
coincident points {xi}N

i , {yi}N
i ∈ Rd (in our case xi are

the grid locations), this method finds a diffeomorphism such
that yi = ϕ(xi).

In this work we tackle the problem of estimating the dif-
feomorphisms φt(x) at t = 1, solution of equation (2),
given a stationary velocity vector field v(x) known at any
point, defined by a known function or by the grid sampling
together with an interpolation scheme, being the latter the
most common situation in practical applications. We ana-
lyzed the case of grid sampling with (bi- tri-)linear interpo-
lation because of its small complexity. This study could be
extended to more complex interpolation schemes.

Forward Euler method. This basic integration method
consists in dividing time in N small steps, and updating
φt(x) as

φt+dt(x) = φt(x) + dt v(φt(x)), (3)

with φ0(x) = x and dt = 1
N . In practice, it is more accurate

to update only the displacement field ∆t(x) ≡ φt(x) − x,
i.e. ∆t+dt(x) = ∆t(x) + dt v(x + ∆t(x)), because the
arguments of the sum have similar order of magnitude.

Computational time increases linearly with the number
of steps N , that can be arbitrarily large, providing arbitrary
large accuracy limited by machine precision. We chose as
our ground truth Forward Euler method because of the two
following reasons: the accuracy can be controlled by the
number of steps N , and secondly, interpolation is only per-
formed on vector field v(x). Other methods require inter-
polation of diffeomorphisms, which is a more complex task
and prone to error.

Taylor expansion. The velocity vector field v can be writ-
ten as v(x) =

∑d
i=1 vi(x)ei, where {ei}d

i=1 is an orthogo-
nal basis of R

d. If the components vi(x) are analytic then
the solution of Eq. (2) is also analytic, and is given by the
formal power series [10]

φt(x) = etV x =
∞∑

n=0

tn

n!
V nx, (4)

where V ≡ ∑d
i=1 vi(x) ∂

∂xi
is a differential operator and

V n denotes the n-fold self-composition of V . The assump-
tion of (bi- tri-) linear interpolation is in contradiction with
the analiticity requirement of vi(x). However, in this work
it is assumed that derivatives can be approximated by cen-
tered differences.

Equation (4) is clearly a generalization of the Taylor ex-
pansion of the exponential of scalar numbers, and it is often
known as Lie Series. The first terms of the expansion are
given by

v0(x) = x

v1(x) = v(x)

v2(x) =
∑

i

vi(x)
∂v(x)
∂xi

v3(x) =
∑

j

vj(x)
∂

∂xj

(∑
i

vi(x)
∂v(x)
∂xi

)

...

The same result can be obtained by direct derivation of



φt(x) with respect to time, and using Equation (2),

φt(x)|t=0 = x

d

dt
φt(x)|t=0 = v(φt(x))|t=0 = v(x)

d2

dt2
φt(x)|t=0 =

d

dt
v(φt(x))|t=0 =

=
∑

i

∂v(x)
∂xi

d

dt
φt,i(x)|t=0 =

=
∑

i

∂v(x)
∂xi

vi(x)

An advantage of the Taylor expansion is that no interpo-
lation is required, the value of φt(x) at each point x is only
determined by the derivatives of v(x) at that point. The
method can be used to compute exactly a diffeomorphism
of a known analytic v(x).

Composition method. As φt(x) belongs to a one-
parameter subgroup, φr+s(x) = φr(x) ◦ φs(x) = φs(x) ◦
φr(x) and φ0(x) = x. In particular, if φ1/N (x) is known,
then

φ1(x) = (φ1/N (x))N , (5)

which can be iteratively computed as

φt+dt(x) = φdt(x) ◦ φt(x) (6)

where dt = 1/N . For small dt, φdt(x) can be approximated
by x + dt v(x).

This initialization generates the same analytical solu-
tion as the Euler method, as r.h.s. of (6) equals φt(x) +
dt v(φt(x)) which is exactly the same as in (3). However
the numerical implementation of both methods do not have
the same performance because due to the limited machine
precision, the computation of φdt(x) = x + dt v(x) at the
first stage could introduce a significant error.

In addition, even though the composition φdt(x) ◦
φt(x) = φt(x) ◦ φdt(x), their numerical implementations
are quite different. While the left term is computed as
φt(x)+dt v(φt(x)) where v(x) is linearly interpolated (ac-
cording to our assumption), the right term is computed as
φt(x + dt v(x)), and a possible large and highly non-linear
φt(x) must be sampled. Linear interpolation was used be-
cause an appropiate interpolation is unknown, introducing
larger errors.

Scaling and Squaring method. This method is based on
the equality exp(v) = (exp(v/2N ))2

N

, and the assumption
that exp(v/2N ) ≈ x + v(x)/2N for large N . Then exp(v)
can be computed by recursive squaring N times exp(v/2N)

φ2t(x) = φt(x) ◦ φt(x) = φt(φt(x)), (7)

starting with φ2−N (x) = x + 2−N v(x). The SS method
is fast because only N composition are needed, while the
composition and Euler methods require 2N steps for the
same initial approximation.

The main limitation of this method is that interpola-
tion of possible highly nonlinear diffeomorphisms is per-
formed in the last steps. Even though the approximation
exp(v/2N) ≈ x+v(x)/2N can be very accurate using large
values of N , the sampling error made in the computation
of the last squaring φ1(x) = φ1/2(φ1/2(x)) may be large.
Therefore, the SS method applied to diffeomorphisms has
an intrinsic lower bound in accuracy, related to the interpo-
lation scheme.

Interpolated Scaling and Squaring method. In [3]
the frequency behaviour of composition was analysed,
and it was argued that the essentially band-limiting fre-
quency of a scalar composition h(x) = g(f(x)) is given
by νh = νg max |f ′(x)|, where ν denotes the maxi-
mum frequency. Applying this rule to the composition
(5), νφ1 = νv(max | d

dxφdt(x)|)N−1 = νv(max | d
dx(x +

v(x)/N)|)N−1 ≈ νv(1 + max | d
dxv(x)|/N)N−1 N→∞−−−−→

νv exp(max | d
dxv(x)|). Therefore, the spatial frequency of

ϕ(x) exponentially scales with frequency and magnitude of
v(x). The multidimensional case was also analyzed in [3],
arriving to a similar band-limit. This suggests that for vec-
tor fields v(x) with either large magnitude or frequency, an
upsampling would be required to avoid aliasing.

In order to reduce the interpolation error of the SS
method, we propose to interpolate v(x) in a finer grid than
the original and then to apply the SS method.

A big limitation of this method, is that the memory re-
quirement is increased by a factor for r2d, being d the am-
bient dimension, and r the interpolation ratio of the grid.

3. Experiments and results

Simulated experiments. Random vector fields were gen-
erated on isotropic regular grids of sizes 500, 100x100 and
60x60x60, for ambient dimensions 1, 2 and 3 respectively.
In order to reduce boundary condition effects, a rectangu-
lar window was applied to cancel out the 10 outer samples,
and a Gaussian smoothing of a variable σ was applied. Fi-
nally the velocity vector fields was scaled in order to obtain
several displacement magnitudes.

The accuracy of each estimation method was assessed by
the RMS and maximum absolute value of the displacement
field error, being the ground truth the forward Euler method
with a time step of 0.001, i.e. N = 1000.

Results of accuracy vs. computational time for a wide
range of the free parameter in each method are illustrated in
Fig. 1, 2 and 3 for 3D, 2D and 1D respectively. In the case
of interpolated SS method, there are two free parameters:
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Figure 1. Odd rows: accuracy vs CPU time for the estimation of the exponential of a 3D vector field. Maximum (RMS) error is plotted
with solid (dotted) lines. Even rows: illustration of the corresponding deformation grid at mid slice. Increasing displacement magnitudes
from top to bottom. Decreasing σ of the Gaussian smoothing from left to right.
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Figure 2. Idem Fig. 1 for 2D.
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Figure 3. Idem Fig. 1 for 1D, except for displacement functions ϕ(x) − x in even rows.

N and the interpolation ratio. In our experiments N was set
to 7 and the interpolation ratio ran from 1 to 6 at least.

Computations were performed using a 1.83GHz Core 2
Duo processor within a 2GB memory standard computer
running Matlab under Linux. Linear interpolation was im-
plemented as C source mex files.

Exponentials of intersubject 3D brain mappings. In or-
der to illustrate the performance in a more realistic case,
such as the atlas estimation from a set of 3D brain T1 MRI
images, we computed exponentials of vector fields charac-
terizing intersubject mappings. A subset of 23 images was
selected from LPBA40 database from LONI UCLA [9]. An
image was randomly selected as template and diffeomor-
phic non-rigid registration [7] was performed to the remain-

ing 22 cases. The outcome of this algorithm is a vector field
v(x). The results of the error in the estimation of the expo-
nentials are shown in Fig. 4.

4. Discussion

Explicit forward Euler. Its performance was robust for the
range of spatial frequencies and displacements magnitudes.

Taylor expansion. Looking at the results, two main prob-
lems of the Taylor expansion can be highlighted. Firstly, it
diverged at high displacement magnitudes, for example in
the bottom row of Figures 1-3. Secondly, the best accuracy
was obtained with an expansion order that decreased for
higher spatial frequencies. This behaviour is more clearly
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Figure 4. Error (mean ± standard deviation) vs CPU time in the
estimation of exponentials of 3D vector fields from intersubject
brain registration. Maximum (RMS) error is plotted with solid
(dotted) lines.

Figure 5. Illustration of deformation grids superimposed on brain
images. Left: source image and forward mapping. Right: target
image and inverse mapping.

seen in top row of Figures 2 and 3. The reason is that
high order expansion terms do not contribute effectively to
improve the accuracy because derivatives are estimated by
simple centered finite differences, with more emphasis at
high spatial frequencies.

In contrast, at 1D Taylor expansion method outper-
formed the others methods in speed (look at the 4 panels
closer to top-left corner in Fig. 3).
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Figure 6. Complementary cumulative histogram of the error for
composition and SS method. Curves with different values of N :
from top-right to bottom-left corner, N = 5, 10, 15, 20, 25, 30 for
Composition and N = 2, 3, 4, 5, 6, 7 for SS method.

Composition. As it was previously mentioned in Section 2,
the accuracy of the composition method was systematically
worst than forward Euler method, except for 3D large de-
formations (regardless of the spatial frequency), where it
performs almost equal to the Euler method (see bottom row
of Fig. 1).

Scaling and Squaring. This method provided the best
accuracy-time trade-off for most of the situations. The main
drawback is that it showed an accuracy bound, i.e. large val-
ues of N did not improve accuracy. The bound was usually
reached with N about 7-10 for most situations (ambient di-
mension, displacement magnitude and spatial frequency).
The worst performance was obtained at large deformations
and spatial frequencies.

Scaling and Squaring with interpolation. This method
allowed to obtain better accuracy than the SS method at
the expense of bigger computational requirements, both in
memory and time. In particular, for 1D, it was the fastest
method among the most accurate methods.

All in all, it can be said that the SS method with N ≈ 8 is
a good choice for an RMS error of about some hundredths
of voxel size. In some situations, the maximum error may
reach voxel size. If better accuracy is required in 3D, the
forward Euler method should be used at high spatial fre-
quencies (see right columns of Fig. 1). In the special case of
small and medium deformations and frequency in 1D (see
the 4 panels closer to top-left corner in Fig. 3), the Taylor
expansion method provided similar accuracy with less com-
putational time.



3D MRI brain images. In a realistic intersubject brain reg-
istration application, the best performances was obtained by
the SS method (see Fig. 4). Note that the performance vari-
ability in the 22 subjects was small compared to the perfor-
mance difference among methods. A small accuracy gain,
with a different method, would require a high increase of
time. It can be appreciated a dramatic error rise for the SS
method at N ≈ 13. This behaviour is because machine
precision was insufficient to compute x + v(x)/2N . While
in the simulated experiments section double precision was
used, in this case computations were done with single pre-
cision due to memory issues. If double precision were used,
the same error-time curve would be obtained up to N ≈ 13,
appearing the error rise at N ≈ 40.

Fig. 5 shows an example of intersubject brain registration
illustrating the order of magnitude of spatial frequencies as
well as deformation magnitudes typically found.

In order to get a better insight into the distribution of the
error complementary cumulative histograms, i.e. the num-
ber of voxels with error larger than a given value, are shown
in Fig. 6. It is clearly seen that the number of voxel with
very large errors in the SS method is much lower that in
composition method. These large errors for the SS method
where mostly located around the lateral ventricles.

5. Conclusions

The performance of several methods to compute the
group exponential of diffeomorphisms was analyzed in this
paper. Among these methods, a variation of the Scaling and
Squaring method was proposed, that slightly increased the
accuracy at the expense of an increase of time and memory
requirements.

In our two experiments, including simulated data and
brain data sets, the SS method obtained the best accuracy-
time trade-off. However, a lower bound in accuracy was
found, normally reached with N about 8 to 10.

All the experiments were performed using (bi-tri) lin-
ear interpolation. Error-time curves could be very differ-
ent with an alternative interpolation scheme, although the
lower bound in accuracy of the SS method would remain.
The Taylor expansion approximation would probably be the
most sensitive to the interpolation scheme.

For 1D applications, such as histogram analysis or time
series warping and analysis, or in the cases of very low spa-
tial frequency, the Taylor expansion method with a small
number of terms can be an efficient option.

It must be kept in mind that in diffeomorphic registra-
tion applications the spectrum of spatial frequencies of v(x)
depends on the regularizer imposed in the optimization al-
gorithm. The performance analysis on a wide range of sit-
uations (ambient dimensions, deformation amplitudes and
spatial frequencies) done in this work provides useful in-
formation to select the best free parameter and method to

compute the group exponential of vector fields. In partic-
ular, in a multiscale registration it may be sensible to use
different degrees of regularization at each scale.

An advantage common to forward Euler and Taylor ex-
pansion method is that the diffeomorphisms can be com-
puted on isolated points as well as on non-uniform grids,
with a computational load proportional to the number of
points. In contrast, in the SS and composition methods a
sampling of the whole domain is used.
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